The Average-Case Time Complexity of Certifying the Restricted Isometry Property
نویسندگان
چکیده
In compressed sensing, the restricted isometry property (RIP) on $M \times N$ sensing matrices (where < ) guarantees efficient reconstruction of sparse vectors. A matrix has notation="LaTeX">$(s,\delta)$ - notation="LaTeX">$\mathsf {RIP}$ if behaves as a notation="LaTeX">$\delta $ -approximate notation="LaTeX">$s$ -sparse It is well known that an notation="LaTeX">$M\times with i.i.d. notation="LaTeX">$\mathcal {N}(0,1/M)$ entries high probability long notation="LaTeX">$s\lesssim \delta ^{2}~M/\log . On other hand, most prior works aiming to deterministically construct have failed when notation="LaTeX">$s \gg \sqrt {M}$ An alternative way find RIP could be draw random gaussian and certify it indeed RIP. However, there evidence this certification task computationally hard , both in worst case average case. paper, we investigate exact average-case time complexity certifying for entries, “possible but hard” regime notation="LaTeX">$\sqrt {M} \ll s\lesssim M/\log Based analysis low-degree likelihood ratio, give rigorous subexponential runtime notation="LaTeX">$N^{\tilde \Omega (s^{2}/M)}$ required, demonstrating smooth tradeoff between maximum tolerated sparsity required computational power. This lower bound essentially tight, matching existing algorithm due Koiran Zouzias. Our hardness result allows take any constant value (0, 1), which captures relevant sensing. improves upon Wang et al. limited = o(1)$
منابع مشابه
Computational Complexity of Certifying Restricted Isometry Property
Given a matrix A with n rows, a number k < n, and 0 < δ < 1, A is (k, δ)-RIP (Restricted Isometry Property) if, for any vector x ∈ R, with at most k non-zero co-ordinates, (1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 In other words, a matrix A is (k, δ)-RIP if Ax preserves the length of x when x is a k-sparse vector. In many applications, such as compressed sensing and sparse recovery, it is desirable to c...
متن کاملApproximately certifying the restricted isometry property is hard
Amatrix is said to possess the Restricted Isometry Property (RIP) if it acts as an approximate isometry when restricted to sparse vectors. Previous work has shown it to be np-hard to determine whether a matrix possess this property, but only in a narrow range of parameters. In this work, we show that it is np-hard to make this determination for any accuracy parameter, even when we restrict ours...
متن کاملThe restricted isometry property for time-frequency structured random matrices
We establish the restricted isometry property for finite dimensional Gabor systems, that is, for families of time–frequency shifts of a randomly chosen window function. We show that the s-th order restricted isometry constant of the associated n×n Gabor synthesis matrix is small provided s ≤ c n/ log n. This improves on previous estimates that exhibit quadratic scaling of n in s. Our proof deve...
متن کاملthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
The restricted isometry property for random convolutions
We present significantly improved estimates for the restricted isometry constants of partial random circulant matrices as they arise in the matrix formulation of subsampled convolution with a random pulse. We show that the required condition on the number m of rows in terms of the sparsity s and the vector length n is m & s log s log n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2021
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2021.3112823